Chitosan Enriched Three-Dimensional Matrix Reduces Inflammatory and Catabolic Mediators Production by Human Chondrocytes

نویسندگان

  • Frederic Oprenyeszk
  • Christelle Sanchez
  • Jean-Emile Dubuc
  • Véronique Maquet
  • Catherine Henrist
  • Philippe Compère
  • Yves Henrotin
  • Rasheed Ahmad
چکیده

This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%-alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes

AIM The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk. MATERIALS AND METHODS Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix...

متن کامل

Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype

BACKGROUND Notochordal cell conditioned medium (NCCM) derived from non-chondrodystrophic dogs has pro-anabolic and anti-catabolic effects upon nucleus pulposus (NP) cells. Here, for the first time, we assessed the ability of NCCM to influence the production of extracellular matrix and inflammatory proteins by healthy and osteoarthritic human chondrocytes within engineered cartilage tissues. We ...

متن کامل

Control of Cell Migration and Inflammatory Mediators Production by CORM-2 in Osteoarthritic Synoviocytes

BACKGROUND Osteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have studied the ability of CORM-2 to modify...

متن کامل

Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage

BACKGROUND Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed...

متن کامل

Study of Human Chondrocyte Redifferntiation Capacity in Three-Dimensional Hydrogel Culture

Objective(s) Articular cartilage tissue defects cannot be repaired by the proliferation of resident chondrocytes. Autologous chondrocyte transplantation (ACT) is a relatively new therapeutic approach to cover full thickness articular cartilage defects by in vitro grown chondrocytes from the joint of a patient. Therefore, we investigated the redifferentiation capability of human chondrocytes ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015